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We present a numerical study of the diffusion of energy at high temperature in strongly disordered chains of
interacting classical spins evolving deterministically. We find that quenched randomness strongly suppresses
transport with the diffusion constant becoming reduced by several orders of magnitude upon the introduction
of moderate disorder. We have also looked for but not found signs of a classical many-body localization
transition at any nonzero strength of the spin-spin interactions.
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I. INTRODUCTION

Chemical, structural, and other imperfections are unavoid-
able in a typical crystalline solid. Often, reducing their con-
centration reveals interesting intrinsic properties of the ideal
“clean” material. It has long been recognized, however, that
sufficiently strong disorder can lead to a host of phenomena
essentially distinct from what is observed in clean materials.
Anderson localization1 is perhaps the best known example of
such a phenomenon, whereby a quantum particle becomes
coherently trapped by the impurity potential and no longer
participates in transport. Essentially a wave phenomenon,
Anderson localization can also occur for classical linear
waves, e.g., photons or phonons.

It has often been assumed that true localization �strictly
zero diffusivity� of interacting particles can only happen at
absolute zero temperature, even though Anderson’s original
paper on localization discusses the possibility of localization
persisting at nonzero temperature.1 Recently this question
has been examined carefully by Basko et al.,2 who per-
formed a stability analysis of an Anderson insulator against
weak interparticle interactions at low but nonzero tempera-
ture. Their central conclusion is that an isolated system of
strongly disordered but weakly interacting quantum particles
should exhibit a transition into an insulating phase with
strictly zero diffusion at some low but nonzero excitation
energy per particle �or temperature�. Motivated by this work,
two of us3 considered quantum lattice models that would be
expected to exhibit such a dynamical many-body localization
transition as one varies the interactions or disorder strength,
even at arbitrarily high temperature. We attempted to detect
this transition by studying exact many-body spectral statis-
tics of small lattices. Initial results are encouraging,3 al-
though they fall short of making a strong case for the exis-
tence of a quantum many-body localization transition, due to
strong finite-size effects.

Setting aside the question of the existence of such a tran-
sition �i.e., assuming it does exist�, one might wonder about
its nature, e.g., the universality class. On the one hand, the
theoretical analysis of Basko et al.2 relies entirely on quan-
tum many-body perturbation theory. Rather generally, how-
ever, one expects macroscopic equilibrium and low-
frequency dynamic properties of interacting quantum

systems at nonzero temperature to be describable in terms of
effective classical models. This expectation is certainly borne
out in a variety of symmetry-breaking phase transitions with
a diverging correlation length, such as, e.g., a finite tempera-
ture Néel ordering of spin-1/2 moments. One can begin to
understand the microscopic mechanism behind such a many-
body “correspondence principle” as a consequence of an ef-
fective coarse graining, whereby the relevant degrees of free-
dom are correlated spins moving together in patches that
grow in size as the phase transition is approached and there-
fore become “heavy” and progressively more classical. Fur-
ther extension of these ideas to general, noncritical, dynami-
cal response is more involved: roughly speaking, it requires
that the typical many-body level spacing in each patch be
much smaller than the typical matrix element of interactions
with other patches. If this is true �as it is in most models at
finite temperature, though not necessarily in the insulating
phase analyzed by Basko and collaborators� one replaces mi-
croscopic quantum degrees of freedom with macroscopic
classical ones, which typically obey “hydrodynamic” equa-
tions of motion at low frequencies.4 Since it is expected that
the many-body localization transition is accompanied by a
diverging correlation length �akin to the Anderson transition�
one might expect some sort of classical description to
emerge enroute from the localized phase to the diffusive
phase. It was this thinking that initially motivated us to con-
sider the possibility of classical many-body localization.

The process by which collective classical �hydro� dynam-
ics emerges from a microscopic quantum description is
subtle and may or may not be relevant to the many-body
localization discussed above. A somewhat less subtle but ap-
parently largely unexplored related question is whether non-
linear, interacting, and disordered classical many-body sys-
tems are capable of localization at nonzero temperature. To
be precise, a many-body classical dynamical system with a
local Hamiltonian �including static randomness� should show
hydrodynamic behavior, e.g., energy diffusion, provided the
local degrees of freedom are nonlinear and interacting, and
the disorder is not too strong. In this regime, the isolated
system can function as its own heat bath and relax to thermal
equilibrium. Diffusive energy transport must stop if the in-
teractions between the local degrees of freedom are turned
off. How is this limit approached? Can there be a classical
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many-body localization transition where the energy diffusiv-
ity vanishes while the interactions remain nonzero? These
are the basic questions we set out to investigate in this paper.

Our preliminary conclusion is that classical many-body
systems with quenched randomness and nonzero nonlinear
interactions do generically equilibrate, so there is no generic
classical many-body localized phase. Our picture of why this
is true is that generically a nonzero fraction of the nonlin-
early interacting classical degrees of freedom are chaotic and
thus generate a broadband continuous spectrum of noise.
This allows them to couple to and exchange energy with any
other nearby degrees of freedom, thus functioning as a local
heat bath. Random classical many-body systems generically
have a nonzero density of such locally chaotic “clusters” and
thus the transport of energy between them is over a finite
distance and cannot be strictly zero, resulting in a nonzero
�although perhaps exponentially small� thermal conductivity.
Quantum systems, on the other hand, cannot have a finite
cluster with a truly continuous density of states: the spectrum
of a finite cluster is always discrete. Thus the mechanism that
we propose forbids a generic classical many-body localized
phase, yet it does not appear to apply to the quantum case.
The proposed existence of the many-body insulator in quan-
tum problems is then a remarkable manifestation of quantum
physics in the macroscopic dynamics of highly excited mat-
ter. In this paper we shall primarily focus on macroscopic
low-frequency behavior, postponing detailed analysis of lo-
cal structure of noise and its relation to transport. Our con-
clusions are broadly consistent with findings of Dhar and
Lebowitz5 although given the rather major differences in
models, methods, and, most importantly, the extent to which
strongly localized regime is probed we refrain from making
direct comparisons.

We study energy transport in a simple model of local
many-body Hamiltonian dynamics that has both strong static
disorder and interactions: classical Heisenberg spin chains
with quenched random fields. We study a one-dimensional
model both because one dimension is more accessible to
numerical study and because we are looking for localization,
which should be most likely in this the lowest of nonzero
dimensions. For simplicity, we consider the limit of infinite
temperature, defined by averaging over all initial conditions
with equal weights. Our systems conserve the total energy
and should exhibit energy diffusion; they have no other con-
servation laws. The energy diffusion coefficient, D, can be
deduced from the autocorrelations of the energy current �as
explained below� and is shown in Fig. 1 as a function of the
strength of the spin-spin interactions, J. The mean-square
random field is �2, and as we vary J we keep 2J2+�2=1, as
explained below. The limit J→0 is where the interactions
vanish, so there is �trivially� no energy transport.

As the interaction J is decreased, the thermal diffusivity D
decreases very strongly; we have been able to follow this
decrease in D for about five orders of magnitude before the
systems’ dynamics become too slow for our numerical stud-
ies. For most of this range, we can roughly fit D�J� with a
power law, D�J�, with a rather large exponent, ��8, as
illustrated in Fig. 1. This large exponent suggests that the
asymptotic behavior at small interaction J may be some sort
of exponential, rather than power law, behavior, consistent

with the possibility that the transport is actually essentially
nonperturbative in J. In principle, it is also possible to fit
these data to a form with a nonzero critical Jc so that D�J
�Jc�=0—such fits prove inconclusive as they produce esti-
mates of Jc considerably smaller than the values of J where
we can measure a nonzero D. Since we are not aware of any
solid theory for the behavior of D�J�, these attempts at fitting
the data are at best suggestive. The large range of variation in
the macroscopic diffusion constant D across a rather modest
range of J is the most clearly remarkable and robust finding
that we wish to present in this paper.

Our model and general methods employed will be pre-
sented and discussed in the next section. Much of what we
present is based on the analysis of energy current fluctuations
in isolated rings. For various reasons we have found it ben-
eficial to focus on these rather than fluctuations of the energy
density or on current carrying states in open systems �we
have spot checked for quantitative agreement among these
three methods�. In Sec. III we present our results for macro-
scopic transport starting from short-time behavior that is
relatively easy to understand and working up to long time, dc
behavior that is both difficult to compute and as of yet poorly
understood. One particularly interesting observation we
make here is that of a subdiffusive behavior at long times,
apparently distinct from the much discussed mode-coupling
behavior well representative of linear diffusion in the pres-
ence of disorder. We discuss some afterthoughts and open
problems in the summary with some important additional
details relegated to Appendices A and B �such as quantitative
explorations of finite-size effects, roundoff, many-body
chaos, and self-averaging�.

II. MODEL, TRAJECTORIES, AND TRANSPORT

The classical motion of N interacting particles is usually
defined by a system of coupled differential equations of mo-
tion. The “particles” we study here are classical Heisenberg
spins—three-component unit-length vectors, Si, placed at
each site i of a one-dimensional lattice. With a standard an-
gular momentum Poisson bracket and a Hamiltonian, H, the
equations of motion are
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FIG. 1. �Color online� Disorder-averaged energy diffusion con-
stant D as a function of the spin-spin interaction J. The line has
slope 8 on this log-log plot.
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�S j

�t
= H j � S j , �1�

where H j =�H /�S j is the total instantaneous field acting on
spin S j. The Hamiltonians we consider are all of the form

H = �
j

�h j · S j + JS j · S j+1� �2�

with uniform pairwise interaction J between nearest-
neighbor spins and quenched random magnetic fields, h j. For
almost all of the results in this paper, we choose the random
fields to be h j =hjn̂ j, where the hj are independent Gaussian
random numbers with mean zero and variance �2 while the
n̂ j are independent randomly oriented unit vectors, uniformly
distributed in orientation. Because of the random fields, total
spin is not conserved and we can focus on energy diffusion
as the only measure of transport in this system. For J=0 and
��0 any initial distribution of energy is localized, as the
spins simply precess indefinitely about their local random
fields, so the diffusivity is D=0. In the opposite limit, where
�=0 and J�0, there is diffusive transport with D�J �with
nonlinear corrections due to the coupling between energy
and spin diffusion4,6�. We are interested in the behavior of D
as one moves between these two limits, especially as one
approaches J=0 with ��0.

Given initial spin orientations, it is in principle straight-
forward to integrate the equations of motion numerically,
thus producing an approximate many-body trajectory. Corre-
lation functions can then be computed and averaged over
such trajectories and realizations of the quenched random
fields. The transport coefficients can thereby be estimated via
the fluctuation-dissipation relations.

A. Model

Before we embark on this program, however, we start by
making a change to the model’s dynamics �Eq. �1�� but not to
its Hamiltonian �2�, in order to facilitate the numerical inves-
tigation of the long-time regime of interest to us, where the
diffusion is very slow. In order to get to long times with as
little computer time as possible, we want our basic time step
to be as long as is possible. What we are interested in is not
necessarily the precise behavior of any specific model but the
behavior of the energy transport in a convenient model of the
type �2�. Since we are studying energy transport, it is abso-
lutely essential that the numerical procedure we use does
conserve total energy �to numerical precision� and that the
interactions and constraints remain local. Thus we modify
the model’s dynamics to allow a large time step while still
strictly conserving total energy.

We change the equations of motion �1� of our model so
that the even- and odd-numbered spins take turns precessing,
instead of precessing simultaneously. We will usually have
periodic boundary conditions, so we thus restrict ourselves to
even length �thus bipartite� chains. We use our basic numeri-
cal time step as the unit of time �and the lattice spacing as the
unit of length�. During one time step, first the odd-numbered
spins are held stationary while the even-numbered spins pre-
cess about their instantaneous local fields,

Hr�t� = hr + JSr−1�t� + JSr+1�t� , �3�

by the amount they should in one unit of time according to
Eq. �1�. Note that since the odd spins are stationary, these
local fields on the even sites are not changing while the even
spins precess so that this precession can be simply and ex-
actly calculated, and the total energy is not changed by this
precession. Then the even spins are stopped and held station-
ary in their new orientations while the odd spins “take their
turn” precessing to complete a full time step. Although this
change in the model’s dynamics from a continuous-time evo-
lution to a discrete-time map is substantial, we do not expect
it to affect the qualitative long-time, low-frequency behavior
of the model that is our focus in this paper. In particular, we
clearly observe correct diffusive decay of local correlations
for weak disorder and essentially indefinite precession of
spins at very strong disorder.

We have decided to use parameters so that the mean-
square angle of precession of a spin during one time step is
one radian �at infinite temperature�, which seems about as
large as one can make the time step and still be roughly
approximating continuous spin precession. This choice dic-
tates that the parameters satisfy

2J2 + �2 = 1. �4�

We will generally describe a degree of interaction by quoting
the J; the strength � of the random field varies with J as
dictated by Eq. �4�.

B. Observables

The basic observable of interest, the instantaneous energy
ei�t� at site i is

ei�t� = hi · Si�t� +
J

2
�Si−1�t� · Si�t� + Si+1�t� · Si�t�� . �5�

Note that with this definition, the interaction energy corre-
sponding to a given bond is split equally between the two
adjacent sites. When updating the spin at site i, only the
energies of the three adjacent sites, ei and ei�1, change due to
the change in the interaction energies involving spin i. This
rather simple pattern of rearrangement of energy allows for
an unambiguous definition of the energy current at site i
during the time step from time t to t+1. If site i is even, so it
precesses first, then the current is

ji�t� = J�Si�t + 1� − Si�t�� · �Si+1�t� − Si−1�t�� �6�

while for i odd,

ji�t� = J�Si�t + 1� − Si�t�� · �Si+1�t + 1� − Si−1�t + 1�� . �7�

We are working at infinite temperature or alternatively at
�= �kBT�−1=0. The conventionally defined thermal conduc-
tivity vanishes for �→0.4 Instead, here we define the dc
thermal conductivity 	 so that the average energy current
obeys

j = 	 � � �8�

in linear response to a spatially and temporally uniform small
gradient in �=1 / �kBT�. The Kubo relation then relates this
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thermal conductivity at �=0 to the correlation function of
the energy current via

	 = �
t

C�t� , �9�

where

C�t� = �
i

��j0�0�ji�t�	� �10�

is the autocorrelation function of the total current, where the
square brackets, �¯ �, denote a full average over instances of
the quenched randomness �“samples”� and the angular brack-
ets, �¯ 	, denote an average over initial conditions in a given
sample and time average within a given run. For our model
�2� the average energy per site obeys

d��e	�
d�

=
J2 + �2

3
�11�

at �=0 and the energy diffusivity D is then obtained from
the relation

	

D
=

d��e	�
d�

. �12�

In a numerical study, if a quantity �such as 	� is non-
negative definite, then it is helpful to measure it if possible as
the square of a real measurable quantity. We use this ap-
proach here, noting that

	 = lim
L,t→


1

Lt
���
�=1

t

�
i=1

L

ji���
2�� . �13�

For a particular instance of the random fields in a chain of
even length L with periodic boundary conditions and a par-
ticular initial condition I run for time t, we thus define the
resulting estimate of 	 as

	I�t� =
1

Lt��
�=1

t

�
i=1

L

ji���
2

. �14�

If these estimates are then averaged over samples and over
initial conditions for a given L and t, this results in the esti-
mate 	L�t�= ��	I�t�	�. These estimates 	L�t� must then con-
verge to the correct dc thermal conductivity 	 in the limits
L , t→
.

C. Finite-size and finite-time effects

In a sample of length L, we expect finite-size effects to
become substantial on time scales

t � tL = CDL2/Def f , �15�

where Def f is the effective diffusion constant at those time
and length scales, and we find CD�10 �remarkably Eq. �15�
remains valid more or less with the same value of CD across
the entire range of parameters—see Appendix A�. With pe-
riodic boundary conditions �which is the case in our simula-
tions� this means that 	L�t� saturates for t� tL to a value
different from �and usually above� its true dc value in the

infinite L limit while with open boundary conditions �no en-
ergy transport past the ends of the chain� the infinite-time
limit of 	L�t� is instead identically zero for any finite L. We
simply avoid this purely hydrodynamic finite-size effect by
using chains of large enough length L, which is relatively
easy, especially in the strongly disordered regime of interest,
where Def f is quite small.

For the smallest values of J that we have studied, the
system is essentially a thermal insulator and the Def f is so
small that finite-size effects are just not visible at accessible
times even for small values of L, such as L=10. Instead,
given the way we are estimating 	, a finite-time effect, due to
the sharp “cutoffs” in time at time zero and t in Eq. �14�,
dominates the estimates 	L�t��J2 / t in this small-J regime.
To explain this better we can rewrite the definition of 	 as

	L�t� =
1

Lt
�
�=1

t

�
��=1

t

C�� − ��� =
2

Lt
�

tav=1

t/2

	L
��tav� , �16�

where we have assumed an even t �there is an additional term
otherwise� and 	L

������−�
� C����. Localization, i.e., zero dc

conductivity, implies a rapidly vanishing 	� as well as 	 at
long times. The latter however acquires a tail, 	�1 / t whose
amplitude is set by the short-time values of 	�.

For the intermediate values of J that are of the most in-
terest to us in this paper, there is also another, stronger finite-
time effect due to an apparently power-law “long-time tail”
in the current autocorrelation function, C���, as we discuss in
detail below. Importantly, at long times this intrinsic finite-
time effect dominates the extrinsic, cutoff induced, 1 / t effect
discussed above, so 	L�t� remains a useful quantity to study
in this regime.

III. RESULTS: MACROSCOPIC DIFFUSION

A. Current autocorrelations

Since the total current is not dynamically stationary, its
autocorrelation function, C�t�, should decay in time. In a
strongly disordered dynamical system we expect the dc con-
ductivity, which is the sum over all times of this autocorre-
lation function, to be very small due to strong cancellations
between different time domains �i.e., C�t� changes sign with
varying t�. The basic challenge of computing the dc thermal
conductivity 	 boils down to computing �and understanding�
this cancellation.

The autocorrelation function C�t� has three notable re-
gimes as we vary J and t. First, C�t� is positive and of order
J2 at times less than or of order 1, as illustrated in Fig. 2. It
quickly becomes negative at larger times. For small J it is
negative and of order J3 in magnitude for times of order 1 /J
�see Fig. 3�. For very small J, this negative portion of C�t�
almost completely cancels the short-time positive portion,
resulting in an extremely small 	� �see inset in Fig. 3�. This
cancellation is a hallmark of strong localization and can be
observed, e.g., in an Anderson insulator where it is nearly
complete �	�→0 exponentially with time�. While the very
short-time behavior at small J is easily reproduced analyti-
cally by ignoring dynamical spin-spin correlations, the be-
havior out to times of order 1 /J is representative of corre-
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lated motion of few spins �likely pairs�. Although likely
nonintegrable, this motion is nevertheless mostly
quasiperiodic—we recorded indications of this in local spin-
spin correlation functions �not shown here�.

Finally, there is apparently a power-law long-time tail
with a negative amplitude: C�t��−t−1−x, with an exponent
that we find is approximately x�0.25 over an intermediate
range of 0.2�J�0.4 �and more generally, perhaps�. To ob-
serve this with the least amount of effort it is best to average
C�t� at long times over a neighborhood of t �see Fig. 4� or to
measure 	L�t� and compute its “exponential derivative,”

�t��	L�t�−	L�2t�, at a sequence of points tn=2n ,n
=1,2 ,3 , . . . �see Fig. 5�. The apparent value x�0.25 of this
exponent is something that we do not understand yet theo-
retically. However, we find that it does provide a good fit to
the data over a wide dynamic range, providing some support
for our use of it to extrapolate to infinite time and thus esti-
mate the dc thermal conductivity, as discussed below.

B. dc conductivity: Extrapolations and fits

Our extrapolations of the dc conductivity will be based
entirely on the long-time behavior of 	L�t� evaluated at a set
of times tn=2n with integer n and for large enough L to
eliminate finite-size effects �so we drop the subscript L�. We

start by describing the procedure used to arrive at the nu-
merical estimates of the dc conductivity, then turn to the
subject of uncertainties.

A typical instantaneous value of the energy current is set
by the strength of the exchange, J. As a consequence 	�t�

1 2 3 4 5
t0.00

0.01

0.02

0.03

0.04

0.05

C�J2

FIG. 2. �Color online� Short-time behavior of C�t� for J=0.32
�red, noticeably different trace� and J=0.08,0.12,0.16 �these are
almost identical data in this plot�. Note rescaling of the vertical axis
by J2.
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Κ��J2

FIG. 3. �Color online� Current autocorrelations on medium time
scales �1 /J for J=0.32,0.16,0.12,0.08, from top �red� to bottom
�green� trace at tJ=2. Note the rescaling of both the vertical and
time axes. The inset shows near cancellation between short and
medium times.
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FIG. 4. �Color online� Top panel: long-time tail in the current
autocorrelation function for J=0.20,0.24,0.28,0.32,0.40 shown
from bottom to top in the order of J listed. Bottom panel: to esti-
mate the exponent we multiply the data by t5/4 �and also display
lines with slope �0.05�. Although these data do not exclude an
exponent that varies with J, we interpret these results as supportive
of a single exponent x�0.25 at asymptotically long times but with
a more pronounced short-time transient at smaller J.
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log10 t
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�5.0
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log10 Η

FIG. 5. �Color online� Long time tails as seen from 
�t� for J
=0.20,0.24,0.28,0.32,0.36,0.40,0.48 �bottom to top�. Black line
is a guide to the eye with slope −1 /4. Note that the short-time
transients are stronger here, as compared to the autocorrelation data
in Fig. 4.
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�J2 for small J at short and intermediate times �t of order
1 /J or less�. Given the time dependence at intermediate and
long times, as discussed above, we adopt the variable s= �1
+Jt�−0.25 as a convenient “scaling” of time for displaying our
results. These rescalings “collapse” the observed values of
	�t� for short to intermediate times across the entire range of
J studied, as shown in Fig. 6.

The extrapolated values of the dc conductivity decrease
strongly as J is reduced. Extrapolation of 	�t� to s=0 and
thus dc is fairly unambiguous for J�0.32, as can be seen in
Fig. 6. To display the long-time results at smaller J, in Fig. 7
we instead show 	 /J10. Here one can see that as we go to
smaller J the extrapolation to the dc limit �s=0� becomes
more and more of “a reach” as J is reduced. The outcomes of
these extrapolations and rough estimates of the uncertainties
are summarized in Table I.

There are several sources of uncertainty in the estimates
of the dc thermal conductivity 	 reported in Table I. These
can be separated into those originating with the measured
values of 	L�t� and those due to the extrapolation to dc.

The statistical uncertainties in the measured values of
	L�t� were estimated �and shown in the figures� from sample-
to-sample fluctuations which we find follow Gaussian statis-
tics to a good approximation for these long �large L�
samples. We did look for a possible systematic source of
error originating with roundoff and its amplification by chaos
�see Appendix B� and found it not to be relevant for the
values of J and t studied.

The uncertainties in our estimates of the dc 	 from the
extrapolation procedure begin with the assumed value of the
long-time power law, x�0.25. Clearly, using a different ex-
ponent will change the extrapolated dc values of 	 some-
what. This uncertainty increases with decreasing J as the
ratio of the 	L�t� at the last time point to the extrapolated
value increases. At our smallest J values, the curvature in our
	 vs s plots due to the crossover to the earlier-time insulat-
inglike �1 / t�s4 dependence becomes more apparent and
further complicates the extrapolation. Although we have ex-

perimented with some different schemes for extrapolating to
dc, including different choices of exponent x, in the end the
following procedure appeared to capture the overall scale of
the diffusion constant and with a generous estimate of the
uncertainty: �i� we start by removing early data with s�0.5
to focus strictly on the long-time behavior; �ii� this long-time
dependence is further truncated by removing five latest
points and then fitted to a polynomial �0

4ansn to better cap-
ture the curvature apparent in the data—these fits are shown
in Fig. 7 and a0 are the dc values reported in Table I; and �iii�
the uncertainty is estimated as the greater of statistical error
in the last point �which is negligible for most of our data�
and the difference between a0 and a simple linear extrapola-
tion performed on latest five data points not included in �ii�.

Overall, we deem the values presented in Table I as “safe”
since all extrapolated 	’s differ by at most a factor 2 from 	’s
actually measured, in other words our extrapolations are rea-
sonably conservative �with the exception of two smallest J’s
where the extrapolations yield stronger reductions�.
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s0.00
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0.15

Κ�J2

FIG. 6. �Color online� Variation in 	�t� for of J=0.64,
0.56, 0.48, 0.40, 0.36, 0.32, 0.28, 0.24, 0.20, 0.18, 0.16, 0.14, 0.12
plotted vs s= �1+Jt�−0.25 �larger J have larger 	 as s→0�. Lines are
merely guides to the eye and statistical errors are too small to be
seen on most of these points. This figure is used for obtaining J
�0.36 entries in Table I.

(b)

(a)

FIG. 7. �Color online� Same data as in Fig. 6 but now scaled and
displayed in a way that allows one to see the extrapolations to s
=0 �t→
� for small J. Because of the rescaling of the plotted in the
previous figure. Note the different rescaling schemes used in pre-
ceding and current plots to focus on collapse of short-time data
�previous plot� vs long-time extrapolations �present plot�. As before
black lines are drawn through the data for guiding the eyes. Colored
lines are results of polynomial fits, as explained in the text. This
figure is used for obtaining entries in Table I for J�0.32.
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IV. SUMMARY, FURTHER EXPLORATIONS, AND
OUTLOOK

In summary, we considered a rather generic model of
classical Hamiltonian many-body dynamics with quenched
disorder and explored the systematic variation in the thermal
diffusivity between conducting and insulating states. We
found a rapid variation in the diffusion constant and pre-
sented quantitative estimates of the latter across more than
five orders of magnitude of change. The origin of this behav-
ior may be traced to spatial localization of classical few-body
chaos—we plan to present further results along these lines
separately. Qualitatively, such a scenario is rather plausible at
very low J, where most spins are spectrally decoupled due to
disorder and essentially just undergo independent Larmor
precessions. As long as J is nonzero, however, there will
always be a fraction of spins in resonance with some of their
immediate neighbors. These clusters are then deterministi-
cally chaotic and thus generate broadband noise, which al-
lows them to exchange energy with all other nearby spins.
Importantly, in the entire parameter range studied this het-
erogeneous regime eventually gives way at long time to a
more homogeneous conducting state in the dc limit. Thus,
we suspect that internally generated but localized noise al-
ways causes nonzero dc thermal transport even in the
strongly disordered regime as long as the spin-spin interac-
tion J is nonzero.

Additionally, we also discovered and characterized an ap-
parent, finite-time �frequency� correction to diffusion, with
the diffusivity varying as D����D�0�+a���x with x�0.25.
Previous theoretical work on corrections to diffusion due to
quenched disorder7 have instead found a correction with ex-
ponent x=1 /2, which is quite inconsistent with our numeri-
cal results. This power-law behavior is apparently not due to
the localization of chaos discussed above, as it persists well
into the strongly conducting regime �larger J� and also exists
in models without a strong disorder limit at all �e.g., with
random fields of equal magnitude but random direction; data

not shown�. So far we have not found a theoretical under-
standing of these interesting corrections to simple thermal
diffusion.
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APPENDIX A: FINITE-SIZE EFFECTS

We have checked that all of the extrapolations above are
free from finite-size effects �by comparing against simula-
tions on smaller and in some cases, larger samples�. Never-
theless, it is interesting to consider the expected hydrody-
namic size effects somewhat quantitatively, via Eq. �15�. To
illustrate this we display in Fig. 8 some results on shorter
systems for J=0.16,0.32,0.40 that do show size effects: due
to the periodic boundary conditions, the conductivity in
smaller rings saturates in the dc limit at a value correspond-
ing to the ac value at a “frequency” 2� / t� corresponding to
�CDD�2� /L�2, with D�3	. Our results are qualitatively
consistent this with CD�10 or slightly larger. It perhaps re-
markable that despite orders of magnitude of variation in the
diffusion constant in going from J=0.4 to 0.16 the crossover
from bulk to finite system behavior is characterized by
roughly the same constant CD�10.

APPENDIX B: CHAOS AMPLIFICATION OF ROUNDOFF
ERRORS

No numerical study of a nonlinear classical dynamical
system is complete without some understanding of the inter-
play of discretization and roundoff errors and chaos. We are

TABLE I. Extrapolated estimates of the dc conductivity 	, esti-
mated uncertainties, length L of samples, and the number of time
steps T of the runs.

J 	 �	 L log2 T Samples

0.64 0.18J2 0.01J2 5000 20 1000

0.56 0.09J2 0.01J2 2000 20 1000

0.48 0.045J2 0.005J2 1000 20 4000

0.40 0.020J2 0.003J2 1000 20 1000

0.36 0.014J2 0.003J2 1000 21 2200

0.32 50J10 8J10 1000 21 16000

0.28 70J10 10J10 1000 24 912

0.24 95J10 20J10 1000 25 558

0.20 130J10 30J10 1000 26 1179

0.18 175J10 50J10 500 27 2000

0.16 250J10 100J10 500 27 1550

0.14 400J10 200J10 500 27 520

0.12 600J10 400J10 500 27 1116
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FIG. 8. �Color online� Finite-size effects for J=0.16,0.32,0.40
�bottom to top near s=0�: 100 vs 20 spins for J=0.40, 10, and 20 vs
100 spins for J=0.32 and 20 vs 100 spins for J=0.16. Red color is
used to indicate the data influenced by finite-size effects according
to Eq. �15� with CD=10. Inset: J=0.16 data replotted.
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studying a Hamiltonian system that conserves total energy,
so the chaos is only within manifolds of constant total energy
in configuration space. Thus although roundoff errors intro-
duce tiny violations of energy conservation, these changes in
the total energy are not subsequently amplified by the sys-
tem’s chaos; we have numerically checked that this is indeed
the case. As a result of this precise energy conservation the
energy transport computation remains well defined. The
simulation is far less stable within an equal-energy manifold,
where nearby trajectories diverge exponentially due to chaos.
In particular, this means that the component of any roundoff
error that is parallel to the equal-energy manifold is exponen-
tially amplified by the chaos. At large J this happens rather
quickly while for small J the chaos is weaker and longer
individual trajectories can be retraced back to their respective
initial conditions. However, at small J very long runs are
necessary to extrapolate to the dc thermal conductivity: in
the end all of our extrapolations are done in the regime
where all individual many-body trajectories are strongly per-
turbed by chaos-amplified roundoff errors.

Ultimately, however, we are only concerned with the sta-
bility of the current autocorrelations that enter in the Kubo
formula for 	. Although the precise trajectories may diverge
due to chaos-amplified roundoff errors, this need not have a
strong effect on C�t�. To study this issue quantitatively we
simulated roundoff noise of different strength in our compu-
tations. Specifically, we add extra random noise to the com-
putation without altering the total energy by multiplying the
angle each spin precesses in each time step by a factor of
1+
i�t�, where the 
i�t� are independent random numbers
uniformly distributed between P and −P �P=noise strength�.

In 400 rings of 500 spins coupled with J=0.14 we simu-
lated the same initial condition with different 
i�t� and with
different values of simulated noise P=100 ,10−1 ,

10−2 ,0—these results are presented in Fig. 9 below. As ex-
pected, the long-time insulating behavior is weakened by the
presence of noise. Quantitatively, however, we observe little
or no difference between results obtained in the presence of
simulated noise with P=10−2 vs ones obtained for intrinsic
noise �which at double precision corresponds to Pintr
�10−15�. Clearly, this statement heavily depends on the du-
ration of the simulation, value of J, etc. Judging from Fig. 9
roundoff errors are not a serious source of uncertainty in our
results in main text. Interestingly, it is also possible for
strong noise to suppress 	, as indeed happens at shorter
times, which can be traced here to a sort of “dephasing” of
sharp response of quasiperiodic localized states.
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FIG. 9. �Color online� Simulated roundoff effects at J=0.14:
low frequency, long-time conductivity is largest for P=1, smaller
for P=0.1, but essentially indistinguishable between P=0 and P
=0.01. Recall that intrinsic roundoff noise in our double-precision
runs is Pintr�10−15. Inset: data with P=0.1,0.01,0.
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